
2022-05-04
BCH Scaling Evaluation Report #1

Intent
The primary purpose of this performance evaluation is to determine how well the BCHN
server and Fulcrum server perform when processing very large BCH blocks. The
secondary purpose of this evaluation is to identify better techniques for future testing
and evaluation; this includes recognizing pitfalls in the testing framework, identifying
non-functional requirements around future tests, and edge cases in the testing
framework, node software, and test subjects.

Testing Method
Execution of the test consists of a BCHN full node that receives blocks and transactions
from a test block emitter, and is disconnected from any other peers/network. A Fulcrum
server is then connected to the BCHN server. The emitter is a custom application
designed to relay blocks and transactions at a programmable rate. The BCHN server is
configured with a custom “ChainParams” configuration to accept and validate the test
blockchain. The host machine is configured with a network time of around 1651113031,
which is necessary to trigger the node out of IBD mode.

Before execution of the test, a custom blockchain was mined. This chain is derived from
BTC/BCH mainnet block #144. 144 mainnet blocks were chosen because they allowed the
chain enough blockheight to have all current BCH mainnet rules to be activated
(including its Aserti32d DAA, which requires 144 blocks). The activation of all mainnet
rules was targeted to ensure the code-paths followed during testing were as close to
identical to the production environment.

Blocks #145 through #244 (inclusive) are empty blocks (only containing a coinbase) to
establish spendable coins for use in testing (coinbase transactions may not be spent until
they are 100 blocks old).

Blocks #245 through #254 are “fan-out” blocks, roughly 177MB in size and containing
about 178k transactions. The fan-out blocks spend one output and generate 26 outputs
each, and are approximately 1kB in size. The transactions in these blocks are heavily
chained, meaning most transactions spend an output from a previous transaction from
within the same block.

Blocks #255 through #259 are “steady-state” blocks, roughly 244MB in size and
containing about 68k transactions. The steady-state blocks spend 25 outputs and
generate 2 outputs each, and are approximately 3.5kB in size. The outputs spent in this

block are chosen from an equal distribution of the previous “fan-out” blocks. Most of
these outputs are found from the first half of each fan-out block, and since blocks are
sorted by canonical ordering, and UTXOs are stored sorted within LevelDB, many of the
UTXOs spent will be found on nearby pages of the UTXO database. This is intended to
render frequent cache-hits from the BCHN UTXO database, which should have a positive
influence on performance. This test is hypothesized to render better results than UTXOs
that are being spent from non-clustered pages of the UTXO database.

Blocks #260 and #261 are “fan-in” blocks, roughly 19MB in size and containing about 2k
transactions. The fan-in blocks spend 64 outputs, generate 1 output each, and are
approximately 9.4KB in size. The outputs spent in these two blocks are from blocks #255
and #256, respectively. These previous outputs are randomly distributed throughout the
UTXO database, and are generally not clustered.

Blocks #262 through #266 are “steady-state” blocks, roughly 468KB in size and contain
about 2k transactions. The steady-state blocks spend 1 output and create 2 outputs, and
are approximately 226 bytes in size. These transactions spend amounts from the fan-in
blocks, fan-out blocks, and previous steady-state blocks (when applicable).

When transmitting blocks from the test block emitter, blocks were submitted via RPC.
Two variations of this test were executed:

1. Blocks were submitted via RPC without broadcasting transactions from the next
block. This results in blocks that are filled with completely “unseen” transactions.
These blocks were transmitted in rapid succession, each transmitted immediately
after the BCHN server completed processing of the previous block.

2. Blocks were submitted via RPC roughly every 10 minutes. For each block, the next
block’s transactions were transmitted to the node (via RPC) over the span of 10
minutes. Each transaction was submitted in an order that ensured their previous
outputs were available. The percentage of each block “seen” was configured to be
roughly 90% of the block’s transactions.

Additional proposed variations of this test consist of submitting the block via the Bitcoin
Network Protocol (instead of RPC), and include transmitting transactions whose previous
inputs have not yet been seen (in the case of chained/orphaned transactions, up to the
maximum configured by the node). Additional variations may include varying the “seen
percentage” from the 0% and 90% used above, with particular interest in 100% seen and
submitting via the compact block protocol.

All tests were run on a 2020 MacBook Pro with 32 GB of 3733 MHz LPDDR4X Ram, a
2.3GHz Quad-Core Intel Core i7, with an Apple SSD AP2048N (M2 via PCIe) drive.

All outputs in the test blocks (after block #144) have canonical private keys. To derive a
private key for an output, concatenate 16 bytes of zero with the output’s block height
(encoded as an 8-byte big-endian integer) and the output’s amount (encoded as an 8-byte
big-endian integer). An example implementation may be found here:

https://github.com/softwareverde/bch-scaling/blob/66c29e6dcf23f3fd58f5cf916048cd0948
b14687/src/main/java/com/softwareverde/bitcoin/scaling/Main.java#L91

Results
We reviewed the timestamps associated with test block emission; unfortunately we did
not log any timestamps to distinguish the difference between transaction-emission’s start
time and the full block-emission’s start time; this has been corrected for future tests.

We reviewed the timestamps that BCHN logged to allocate new block.dat files as the
block-processing start time, and used its update-tip log as the end time.

For Fulcrum, we used BCHN’s end time for each block to assume Fulcrum’s processing
start time, and used Fulcrum’s timestamps of its undo-block creation to measure its block
processing end time. We also measured the script-hashes indexed per second, which
occurs during block processing and transaction processing.

When evaluating results, excluded blocks before block #244 since they were set-up
blocks with only a coinbase transaction.

Summary

0-Percent Seen
On average, when 0-percent of the block was seen beforehand, BCHN was able to
process:

Fan-Out Phase: (Blocks #245-254)

● 5833.4 transactions per second.
● 5833.4 inputs per second, and 151667.5 outputs per second.
● 5.794 MB per second.

Steady State One Phase: (Blocks #255-259)

● 1505.8 transactions per second.
● 37645.1 inputs per second, and 3011.6 outputs per second.
● 5.407 MB per second

https://github.com/softwareverde/bch-scaling/blob/66c29e6dcf23f3fd58f5cf916048cd0948b14687/src/main/java/com/softwareverde/bitcoin/scaling/Main.java#L91
https://github.com/softwareverde/bch-scaling/blob/66c29e6dcf23f3fd58f5cf916048cd0948b14687/src/main/java/com/softwareverde/bitcoin/scaling/Main.java#L91

Fan-In Phase: (Blocks #260-261)

● 708.7 transactions per second.
● 45354.7 inputs per second, and 708.7 outputs per second.
● 6.405 MB per second

Steady State Two Phase: (Blocks #262-266)

● Blocks processed in less than 1 second, stats could not be calculated

On average, when 0-percent of the block was seen beforehand, Fulcrum was able to
process:

Fan-Out Phase: (Blocks #245-254)

● 5535.2 transactions per second.
● 5535.2 inputs per second, and 143915.0 outputs per second.
● 5.498 MB per second.

Steady State One Phase: (Blocks #255-259)

● 38.8 transactions per second.
● 970.7 inputs per second, and 77.7 outputs per second.
● 0.139 MB per second

Fan-In Phase: (Blocks #260-261)

● 0.5 transactions per second.
● 29.9 inputs per second, and 0.5 outputs per second.
● 0.004 MB per second

Steady State Two Phase: (Blocks #262-266)

● 0.5 transactions per second.
● 0.5 inputs per second, and 0.9 outputs per second.
● 0.000 MB per second

90-Percent Seen
On average, when 90-percent of the block was seen beforehand, BCHN was able to
process:

Fan-Out Phase: (Blocks #245-254)

● 7407.6 transactions per second.
● 7407.6 inputs per second, and 192597.9 outputs per second.
● 7.358 MB per second.

Steady State One Phase: (Blocks #255-259)

● 5329.5 transactions per second.
● 133238.1 inputs per second, and 10659.1 outputs per second.
● 19.138 MB per second

Fan-In Phase: (Blocks #260-261)

● 2126.0 transactions per second.
● 136064.0 inputs per second, and 2126.0 outputs per second.
● 19.216 MB per second

Steady State Two Phase: (Blocks #262-266)

● Data is unavailable due to size of blocks and block emission delay

On average, when 90-percent of the block was seen beforehand, Fulcrum was able to
process:

Fan-Out Phase: (Blocks #245-254)

● 5462.8 transactions per second.
● 5462.8 inputs per second, and 142033.2 outputs per second.
● 5.426 MB per second.

Steady State One Phase: (Blocks #255-259)

● 60.9 transactions per second.
● 1522.3inputs per second, and 121.8 outputs per second.
● 0.219 MB per second

Fan-In Phase: (Blocks #260-261)

● 1.4 transactions per second.
● 92.4 inputs per second, and 1.4 outputs per second.
● 0.013 MB per second

Steady State Two Phase: (Blocks #262-266)

● 1332.2 transactions per second.
● 1332.2 inputs per second, and 2664.3 outputs per second.
● 0.286 MB per second

0-Percent Seen vs 90-Percent Seen Comparison Table

BCHN 0p vs 90p
Transactions Per
Second

Inputs Per
Second

Outputs Per
Second

MB Per
Second

BCHN Fan Out (0p) 5833.4 5833.4 151667.5 5.794

BCHN Fan Out (90p) 7407.6 7407.6 192597.9 7.358

BCHN Steady State 1 (0p) 1505.8 37645.1 3011.6 5.407

BCHN Steady State 1 (90p) 5329.5 133238.1 10659.1 19.138

BCHN Fan In (0p) 708.7 45354.7 708.7 6.405

BCHN Fan In (90p) 2126.0 136064.0 2126.0 19.216

Fulcrum 0p vs 90p
Transactions Per
Second

Inputs Per
Second

Outputs Per
Second

MB Per
Second

Fulcrum Fan Out (0p) 5535.2 5535.2 143915.0 5.498

Fulcrum Fan Out (90p) 5462.8 5462.8 142033.2 5.426

Fulcrum Steady State 1 (0p) 38.8 970.7 77.7 0.139

Fulcrum Steady State 1 (90p) 60.9 1522.3 121.8 0.219

Fulcrum Fan In (0p) 0.5 29.9 0.5 0.004

Fulcrum Fan In (90p) 1.4 92.4 1.4 0.013

Fulcrum Steady State 2 (0p) 0.5 0.5 0.9 0.000

Fulcrum Steady State 2 (90p) 1332.2 1332.2 2664.3 0.286

Miscellaneous Observations
After the 0-percent transaction broadcast runs, we saw BCHN take upwards of 28 seconds
to shutdown after a sigkill command was given. The shutdown time for BCHN during the
90-percent broadcast run was not measured. Shutdown times of Fulcrum were not
measured.

Further Research
Next recommended steps for continued testing is to create a chain with blocks roughly
the size of current mainnet blocks to determine a baseline of comparison.

Additional next steps would be to connect a wallet application (i.e. Electron Cash) to
Fulcrum while running through the tests, with the wallet containing variable amounts of
affiliated private keys/transactions.

License
All work performed is under the Creative Commons Attribution 3.0 license, unless
otherwise declared.

Code used to generate the above results may be found:

https://github.com/softwareverde/bch-scaling
https://github.com/softwareverde/bch-scaling-bchn
https://github.com/cculianu/Fulcrum.git

https://github.com/softwareverde/bch-scaling
https://github.com/softwareverde/bch-scaling-bchn
https://github.com/cculianu/Fulcrum.git

Graphs

